
1. Introduction
Geomagnetic storms are the largest geomagnetic disturbances, during which severe space weather threats can 
occur and disrupt our technological society. During geomagnetic storms, petajoules of energy enter the Earth's 
magnetosphere from the solar wind, of which vast majority is stored in the ring current in the inner magneto-
sphere (Ganushkina et al., 2017). The ring current indices such as disturbance storm time (Dst) and SYM-H 
provide essential information about the current strength and evolution as well as the energy budget, and thus are 
of crucial practical importance (Sugiura & Kamei, 1991). These ring current indices have been used in numerous 
space weather applications, such as in classification of storms, as inputs to empirical models of the magneto-
spheric magnetic topology (Tsyganenko, 1989, 1995, 2002a, 2002b), as features representing the geomagnetic 
activity level for machine learning forecasting the ionospheric total electron content (Liu et al., 2020), as param-
eters used for forecasting of the radiation belt energetic particle fluxes (Sakaguchi et al., 2015) and other magne-
tospheric quantities (Bortnik et al., 2018). Therefore, the ability to predict the ring current indices is crucial for 
space weather forecasts and end-users.

Several attempts have been made to use machine learning methods to forecast the SYM-H index. Cai et al. (2010) 
and Bhaskar and Vichare  (2019) used a Nonlinear AutoRegressive with eXogeneous inputs (NARX) neural 
network to predict 5-min averages of the SYM-H index 1 hr ahead using past SYM-H values, solar wind and IMF 
parameters as input. Cai et al. (2010) trained their neural networks with data from 67 geomagnetic storms from 
1998 to 2006, while Bhaskar and Vichare (2019) used data from 25 additional geomagnetic storms from 2006 to 
2013. With the goal of developing operationally feasible models, Siciliano et al. (2021) trained long short-term 
memory (LSTM) and convolutional (CNN) neural networks to predict the SYM-H index 1 hr ahead using only 
IMF parameters and past SYM-H values as input. Collado-Villaverde et al. (2021) took a similar approach to 
predict the SYM-H index several hours ahead, while also considering the effects of omitting past SYM-H values 
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as input on predictive performance. Both Siciliano et al. (2021) and Collado-Villaverde et al. (2021) train and 
validate their networks on 25 strong geomagnetic storms (Dst < −100 nT) from 1998 to 2017 and evaluate their 
performance using 17 strong test storms. To conduct a direct comparison of predictive performance, we use the 
same storms and features to train and test our proposed model. For the rest of this article, we will use the terms 
features and (model) inputs interchangeably. Comparison results are discussed in Section 4.1.

Many machine learning approaches have been taken to forecast the Dst index and other geomagnetic indices such 
as the Kp index. Attempts to apply machine learning methods to forecast the Dst index date back to the works 
of Lundstedt and Wintoft (1994), Gleisner et al. (1996), and Wu and Lundstedt (1997). These authors generally 
observed that the initial and main phases were more accurately predicted than the recovery phase when the Dst 
index is not used as an input due to the fact that the initial and main phases are more strongly correlated with solar 
wind properties. Pallocchia et al. (2006) advocated for using only IMF parameters as inputs for operational fore-
casting of the Dst index because in situ solar wind plasma instruments tend to fail more often than space-based 
magnetometers. This was also the motivation for using only IMF parameters and past values to forecast the 
SYM-H index in Collado-Villaverde et al. (2021) and Siciliano et al. (2021).

Although the majority of machine learning approaches to forecasting geomagnetic indices use neural networks, 
other techniques have also been proposed: Chandorkar et al. (2017) investigated the use of Gaussian Processes 
for forecasting the Dst index; Lu et al. (2016) compared the use of support vector machines (SVM) with neural 
networks; Boynton et  al.  (2011) employed the Nonlinear AutoRegressive Moving Average with eXogeneous 
inputs (NARMAX) model to derive an analytic expression to forecast 1-hr-ahead Dst as function of its past values 
and of the history of a solar wind-magnetoshpere coupling function. Xu et al. (2020) combined neural networks 
with SVM to construct an ensemble model using bagging to predict the Dst index up to 6 hours ahead. We also 
construct an ensemble model but use gradient boosting instead of bagging (see Bauer and Kohavi (1999) for a 
detailed comparison between boosting and bagging). Another difference is that we create an ensemble of many 
simple tree-based models as opposed to a few complex models. A comprehensive review of machine learning 
models for geomagnetic indexes can be found in Camporeale (2019).

Despite the fact that data-driven machine learning methods have made a lot of progress in many scientific fields 
and have become popular tools, the lack of interpretability has been a major drawback. Even if machine learning 
methods have typically focused on predictive performance, there has been a recent surge in interest in making 
these methods more interpretable (Molnar et al., 2020). The development of interpretable machine learning algo-
rithms is of key importance especially in scientific fields such as space weather. Inspite of the fact that machine 
learning methods have repeatedly been shown to outperform operational models empirically, these methods have 
not been widely adopted in an operational setting due to a lack of trust and skepticism from the space weather 
community (Camporeale, 2019). Interpretability gives confidence to operational forecasters that relevant physical 
processes are captured to some degree and encoded in a black-box model, hence reassuring of its generalizability 
and robustness versus rare events, which are the main focus of space weather forecasting. Gray-box approaches, 
which combine physics-based models with black-box models, can also be used to make machine learning meth-
ods for space weather forecasting more reliable (Camporeale et al., 2020).

Explainability can be achieved by using either post-hoc explanation methods or intrinsically interpretable models. 
Examples of intrinsically interpretable models include linear regression, decision trees, and generalized additive 
models. Unfortunately, there is often a tradeoff between intrinsic model interpretability and predictive perfor-
mance because interpretable models tend to make strong simplifying assumptions such as linearity or additiv-
ity. Recent efforts have been made to close this gap, starting with additive models that incorporate two-way 
feature interactions (Lou et al., 2013). Post-hoc explanation methods, to some extent, can be used to explain the 
predictions made by more complex models, usually by constructing an approximate interpretable model after 
training the original model. For an overview of interpretable machine learning methods, see Molnar  (2019). 
Several intrinsically interpretable models have previously been proposed for forecasting geomagnetic indices. 
Ayala Solares et  al.  (2016) proposed a Nonlinear Autoregressive with Exogeneous Inputs (NARX) model to 
forecast the Kp index where the contribution of each model term to the output can be evaluated. Gu et al. (2019) 
proposed an interpretable NARX model the forecast the AE index that also includes uncertainty analysis.

In this work, we not only aim to obtain accurate predictions of the SYM-H index, but more importantly, to learn 
if the data-driven approach can reveal insights on the physical mechanisms. In turn, these insights could then be 
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used to inform future physics-based or gray-box models. We achieve this by 
using a post-hoc explanation method known as Shapley Additive Explana-
tions (SHAP) to quantify the contributions from each input on the predic-
tions made by gradient boosting machines (GBMs) (Lundberg & Lee, 2017). 
SHAP has been successfully used to explain predictions from tree-based 
models in other scientific fields such as medicine (Lundberg et al., 2018), 
solar power forecasting (Kuzlu et al., 2020; Mitrentsis & Lens, 2021), finance 
(Bluwstein et  al.,  2020; Mokhtari et  al.,  2019), and atmospheric science 
(Stirnberg et al., 2020). Section 3.2 continues this discussion on explainabil-
ity and describes the SHAP method in detail.

The remainder of the paper is organized as follows. In Section 2, we intro-
duce the data sources and our data processing procedures. In Section 3, we 
describe the GBM, hyperparameter tuning, and quantification of feature 
importance. In Section  4, we provide results of our predictions, compare 
them with those published in the existing literature, and most importantly, the 
new insights that we learn from the prediction model results. We conclude 
in Section 5 with a summary on key findings and some discussions on future 
work.

2. Data
The Dst index is computed as the H (magnetic north) component perturbation 
on equatorial magnetometers (Mayaud, 1980) on an hourly basis, and is a 
characterization of a magnetic storm that has been used historically. The Dst 
index represents the longitudinally averaged part of the external geomagnetic 
field measured at the equator (Sugiura, 1964). As the index includes only the 
field variation, during geomagnetically quiet times, it hovers around zero. 
The typical definition of a geomagnetic storm is that the Dst index reaches 
values below −50 nT.

The SYM-H index is a high-time-resolution version of the original Dst index, 
and is given at 1-min cadence (Iyemori, 1990; Wanliss & Showalter, 2006). 
The SYM-H index is compiled from 11 low- and mid-latitude magnetometer 
stations. Quiet time fields, including local time and seasonal quiet time Sq 
current effects, are removed, and the residuals are averaged together, divided 
by the cosine of the co-latitude of the station to yield the component parallel 
with the magnetic dipole. Geomagnetic storms can be classified based on 

the SYM-H values: moderate (−100 nT < SYM-H < −50 nT), intense (−250 nT < SYM-H < −100 nT), and 
superstorms (SYM-H < −250 nT).

We extract the SYM-H index data from the OMNI data set compiled at NSSDC (https://spdf.gsfc.nasa.gov) 
using the open-source Python library swmfpy (Al Shidi & Qusai, 2020; King, 2005). We use the level-2 solar 
wind plasma and interplanetary magnetic field (IMF) parameters from the Advanced Composition Explorer 
(ACE) spacecraft provided by the NASA Space Physics Data Facility (https://cdaweb.gsfc.nasa.gov/index.html/) 
as inputs in our models. The original data set contains the IMF components from the ACE Magnetic Field 
Experiment (MAG) instrument (Smith et al., 1998) at a 16-s cadence, as well as proton density, bulk speed, and 
ion temperature from the SWEPAM suite (McComas et al., 1998), at a 64-s cadence. In addition to solar wind 
plasma and IMF parameters, we also include derived quantities, in particular the solar wind dynamic pressure 
and electric field, as we expect them to be relevant input parameters for predicting geomagnetic storms (Newell 
et al., 2007).

Explanation methods, such as SHAP, allow us to confirm or disprove these expectations. To remove some of 
the high frequency variation inherent in high time resolution data and to eliminate minor data gaps, we aver-
age the SYM-H index, solar wind and IMF parameters to a 5-min time resolution. This was also done by 
Collado-Villaverde et al. (2021) and Siciliano et al. (2021).

Storm # Start date End date Min. SYM-H (nT)

1 1998-02-14 1998-02-22 −119

2 1998-08-02 1998-08-08 −168

3 1998-09-19 1998-09-29 −213

4 1999-02-16 1999-02-24 −127

5 1999-10-15 1999-10-25 −218

6 2000-07-09 2000-07-19 −335

7 2000-08-06 2000-08-16 −235

8 2000-09-15 2000-09-25 −196

9 2000-11-01 2000-11-15 −174

10 2001-03-14 2001-03-24 −165

11 2001-04-06 2001-04-16 −275

12 2001-10-17 2001-10-22 −210

13 2001-10-31 2001-11-10 −313

14 2002-05-17 2002-05-27 −113

15 2003-11-15 2003-11-25 −488

16 2004-07-20 2004-07-30 −208

17 2005-05-10 2005-05-20 −302

18 2006-04-09 2006-04-19 −110

19 1998-12-09 1998-12-19 −206

20 2012-03-01 2012-03-11 −149

21 1998-04-28 1998-08-05 −268

22 1999-09-19 1999-09-26 −160

23 2003-10-25 2003-11-03 −427

24 2015-06-18 2015-06-28 −207

25 2017-09-01 2017-09-11 −144

Note. These storms are identical to the ones used to train and validate models 
in Collado-Villaverde et al. (2021).

Table 1 
Storms Used to Train GBMs

https://spdf.gsfc.nasa.gov
https://cdaweb.gsfc.nasa.gov/index.html/
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For training and testing the GBMs discussed in Section 3.1, we use 42 strong 
geomagnetic storms occurring between 1998 and 2018 which reached a mini-
mum SYM-H index value of less than −100  nT. Information about these 
storms are given in Tables 1 and 2. We use fivefold cross validation to opti-
mize hyperparameters (see Section  3.1) instead of using a separate set of 
storms for validation, which allows us to use more data for training models. 
Descriptive statistics for the training and test storms are given in Tables A1 
and A2.

To predict SYM-H Δt hours ahead of time t, henceforth denoted as y(t + Δt), 
we will consider different combinations of the features listed in Table  3. 
We also consider lead times Δt of one and 2 hr. When the SYM-H index is 
included, the observations from the previous 1 hour are used as input. We set 
the history length for all other features to be either 2 hours, if the SYM-H 
index is included, or 30  hr, if the SYM-H index is excluded. The history 
length selections were motivated by Siciliano et al. (2021), who examined the 
coefficient of determination R 2 that quantifies the amount of observed vari-
ance that is explained by the predictions as a function of the history length, 
when the SYM-H index was either included or excluded as an input. They 
found that R 2 started to decrease when the history length was around 30 hr, 
if the SYM-H index was not included as input. When the SYM-H index was 
included as input, the R 2 results for history lengths of 90–180 min were simi-
lar, while R 2 started to decrease for time intervals longer than 180 min.

The different sets of features used as inputs are listed in Table  4. Using 
different sets of features to train our models allows us to investigate how 
the inclusion of certain features affects predictive performance and feature 
contributions. The choice to train our models using only IMF parameters and 
past SYM-H (input set I1, Table 4) was motivated by the high percentage of 
missing observations for solar wind plasma parameters. For IMF parameters 
and solar wind velocity, there is less than 2% of observations missing within 

our sample. However, this percentage is substantially higher (roughly 9%) for solar wind density and temperature. 
Although our proposed model handles missing data internally, we choose to impute missing observations using 
linear interpolation (see Section 3.4 in Chen and Guestrin (2016) for details).

Including solar wind plasma and derived parameters in input sets I3 and I4 allows us to investigate how these 
contribute to predictions. In particular, a sudden increase of dynamic pressure 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  can compress the magneto-
sphere and cause a positive jump in SYM-H, which typically happens at the beginning of the geomagnetic storms 
(sudden storm commencement). Another physically important parameter is the y component of the interplanetary 
electric field Ey = VxBz that characterizes the amount of north-south magnetic flux carried by the solar wind. 
Note that Vx < 0 in the geocentric-solar-magnetic (GSM) coordinate system used here. The rectified electric 
field Es = max (0, Ey) is the same as Ey when the IMF has a southward component (Bz < 0), which facilitates the 
onset of dayside reconnection, and zero for northward IMF when dayside reconnection is limited to high latitudes 

beyond the polar cusps (Burton et al., 1975). Including Es would allow us to 
compare and contrast its contribution to predictions using the Burton equa-
tion (O’Brien & McPherron, 2000a, 2000b; O’Brien, 2002).

To examine how solar wind and IMF parameters influence predictions with-
out knowledge of past SYM-H values, we train models with input sets I2 and 
I4 which exclude past SYM-H values (see Table 4).

3. Methods
3.1. Gradient Boosting Machines

GBMs, also known as gradient boosted trees, have had considerable success 
in prediction tasks across a wide range of domains (Natekin & Knoll, 2013). 

Storm # Start time End time Min. SYM-H (nT)

26 1998-06-22 1998-06-30 −120

27 1998-11-02 1998-11-12 −179

28 1999-01-09 1999-01-18 −111

29 1999-04-13 1999-04-19 −122

30 2000-01-16 2000-01-26 −101

31 2000-04-02 2000-04-12 −315

32 2000-05-19 2000-05-28 −159

33 2001-03-26 2001-04-04 −434

34 2003-05-26 2003-06-06 −162

35 2003-07-08 2003-07-18 −125

36 2004-01-18 2004-01-27 −137

37 2004-11-04 2004-11-14 −393

38 2012-09-10 2012-10-05 −138

39 2013-05-28 2013-06-04 −134

40 2013-06-26 2013-07-04 −110

41 2015-03-11 2015-03-21 −233

42 2018-08-22 2018-09-03 −205

Note. These storms are identical to the ones used to test models in Collado-
Villaverde et al. (2021).

Table 2 
Storms Used to Test GBMs

Features

History 
length (in 

hours)

Past SYM-H index (nT) 1

IMF: Bx, By, Bz (nT) 2 or 30

Solar wind: Vx (km/s), ρ (amu/cm 3), T (K) 2 or 30

Derived quantities: 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  (nPa), Es = max (0, −|Vx|Bz) (mV/m) 2 or 30

Table 3 
Features Used as Input Into Our Models
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Shwartz-Ziv and Armon (2021) recently performed a rigorous study showing 
GBMs outperformed several neural network models in terms of accuracy in 
classification and regresssion problems with tabular data. GBMs are consist-
ently used in the winning solutions of various machine learning predic-
tion competitions like Kaggle, showing its effectiveness in a wide range of 
problems (Chen & Guestrin, 2016). In the space sciences, GBMs and other 
ensemble methods have recently been used to predict ambient solar wind 
flow (Bailey et al., 2021) and the Dst index (Xu et al., 2020).

In contrast to algorithms that construct one complex model, gradient boost-
ing sequentially constructs simple prediction models called base learners that 
improve upon previously constructed base learners and sums them together 
to obtain an ensemble model. This process is analogous to how gradient 
descent optimizes weights in a neural network. Seen as a form of “functional 

gradient descent,” gradient boosting minimizes an objective function by iteratively adding a new base learner, 
usually a decision tree, that lead to the largest decrease in the loss function (Friedman, 2001). In the case of 
GBMs, the base learners are regression trees, which are a highly interpretable class of machine learning models 
that mimic human decision-making but are often too simplistic for most prediction problems when used alone. 
Fortunately, ensembles of regression trees, like GBMs, are capable of producing highly accurate predictions 
while still taking advantage of the interpretability of regression trees. In addition to gradient boosting, bagging is 
another widely used ensemble method that constructs multiple base learners in parallel and aggregates them by 
averaging (Breiman, 1996).

The GBMs that we use to forecast SYM-H have the form

𝑦𝑦(𝑡𝑡 + Δ𝑡𝑡) = 𝛼𝛼 +

𝑀𝑀
∑

𝑚𝑚=1

𝑇𝑇𝑚𝑚(𝐼𝐼(𝑡𝑡)) + 𝜖𝜖(𝑡𝑡), 𝑡𝑡 = 1,… , 𝑁𝑁, (1)

where I(t) is a vector of inputs used at time t; ϵ(t) is an error term at time t; Tm's are regression trees; M is 
the number of iterations (trees) in the training algorithm; N is the number of timepoints; and α is a constant 
intercept term. I(t) depends on which input set from Table  4 is used. For instance, if input set I2 is used, 

𝐴𝐴 𝐴𝐴(𝑡𝑡) = (𝐵𝐵𝑥𝑥(𝑡𝑡),… , 𝐵𝐵𝑥𝑥(𝑡𝑡115), 𝐵𝐵𝑦𝑦(𝑡𝑡),… , 𝐵𝐵𝑦𝑦(𝑡𝑡115), 𝐵𝐵𝑧𝑧(𝑡𝑡),… , 𝐵𝐵𝑧𝑧(𝑡𝑡115)) , where, for example, Bz(t − 60) denotes the 
value of Bz 60 min prior. The regression trees can be written mathematically as

Input set Features included

I1 IMF, past SYM-H

I2 IMF

I3 IMF/solar wind/derived quantities, past SYM-H

I4 IMF/solar wind/derived quantities

Table 4 
Various Sets of Features Used as Inputs to Train Our Models

Figure 1. Structure of the first tree T1 learned in a gradient boosting machine (GBM) trained with input set I3 to predict the 
SYM-H index 1 hr ahead. The leaf nodes of the tree are shaded gray. The value in each leaf node is its corresponding leaf 
weight. Left splits correspond to the inequality in the previous node being true, and vice versa.
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𝑇𝑇 (𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥), (2)

where w are the leaf weights of the tree; and q represents the tree structure 
by mapping an input to its corresponding leaf node index. Figure 1 shows the 
tree structure of one of the trees in a GBM that we trained.

To train our GBMs, we use the open-source framework XGBoost that 
constructs the regression trees using gradient boosting and penalizes trees 
that are overly complex to avoid overfitting (Chen & Guestrin, 2016). More 
specifically, at each iteration m, we will construct a new regression tree Tm by 
minimizing the following objective function. 


(𝑚𝑚) (𝑇𝑇𝑚𝑚) =

𝑁𝑁
∑

𝑡𝑡=1

{

𝑦𝑦(𝑡𝑡 + Δ𝑡𝑡) −
[

�̂�𝑦(𝑚𝑚−1)(𝑡𝑡 + Δ𝑡𝑡) + 𝑇𝑇𝑚𝑚(𝐼𝐼(𝑡𝑡))
]}2

+

𝑚𝑚
∑

𝑗𝑗=1

Ω (𝑇𝑇𝑗𝑗) , (3)

where �̂�𝑦(𝑚𝑚−1)(𝑡𝑡 + Δ𝑡𝑡) =

𝑚𝑚−1
∑

𝑘𝑘=1

𝑇𝑇𝑘𝑘(𝐼𝐼(𝑡𝑡)) andΩ (𝑇𝑇𝑗𝑗) = 𝛾𝛾𝛾𝛾𝑗𝑗 +
1

2
𝜆𝜆

𝛾𝛾𝑗𝑗
∑

𝑘𝑘=1

𝑤𝑤2

𝑗𝑗𝑗𝑘𝑘
. (4)

In Equation 4, Kj is the number of leaf nodes in Tj; wj,k's are the leaf node 
weights in Tj; and γ and λ are regularization hyperparameters. Ω is a regular-
ization term that penalizes the complexity of the regression trees by limiting 

the number of leaf nodes and shrinking the leaf weights. Increasing γ results in shallower trees while increasing λ 
leads to smaller leaf weights. An alternative method for controlling tree size is to explicitly set the maximum tree 
depth. Besides increasing λ, we can also reduce the influence of individual trees by scaling their leaf weights by 
a learning rate. It is typically impossible to enumerate over all tree structures when constructing each regression 
tree. XGBoost takes a greedy approach that starts from a single leaf and iteratively adds branches to the tree that 
results in the largest loss reduction. This step involves finding the optimal feature and value to split the tree. Algo-
rithms for splitting the tree are described in more detail in Section 3 of Chen and Guestrin (2016).

To reduce the risk of overfitting, we control model complexity by optimizing several hyperparameters: learning 
rate, maximum tree depth, feature subsampling percentage, minimum child weight, and number of boosting iter-
ations (trees). We optimize these hyperparameters, except the number of iterations, using cross validation and a 
gradient-free optimization platform called Nevergrad (Rapin & Teytaud, 2018). To set the number of iterations 
(trees), we monitor performance using cross validation at each iteration and terminate the algorithm when the 
performance stops improving. This technique is commonly referred to as early stopping in the machine learning 
literature (Zhang & Yu, 2005). Cross validation is performed by first splitting the training storms in Table 1 into 
Table 5 sets. After that, we use each set for evaluation while training the model using the other 4 sets. We repeat 
this procedure four times until all sets have been used for evaluation. Using cross validation, as opposed to a 
separate validation set, allows us to use more data when training the final model. The specific hyperparameter 
values we set are given in Table 5.

GBMs have several advantages over competing machine learning methods. GBMs, and tree-based methods in 
general, are invariant to monotonic transformations of the features so it is better equipped to handle inputs on 
different scales. A practical consequence of this property is that the features don't have to be standardized before 
training. GBMs are robust against issues arising from correlated features due to the greedy nature of gradient 
boosting and how regression trees are constructed. A downside of tree-based models for time series forecasting is 
that they produce predictions that are not smooth due to the tree structure of the model (Hastie et al., 2001). This 
can be seen in Figure 2, where the predictions from our GBM looks noisier than the ones from LSTM. Despite 
this property, GBMs are still able to produce highly accurate predictions. Another disadvantage is that regression 
trees do not extrapolate well so they may exhibit sporadic behavior when predicting with inputs that have values 
outside of the bounds of the inputs used for training. Fortunately, as seen in Tables A1 and A2, the features in our 
test set are mostly within the bounds of the features in the training set.

GBMs can also suffer from over-specialization, wherein trees added in later iterations tend to only impact the 
predictions of a few instances (Korlakai Vinayak & Gilad-Bachrach, 2015). This may make the model highly 
sensitive to the contributions of the initially added trees. This issue is combated, to some extent, by select-

Input set Hyperparameter Value

I1, I2 Learning rate 0.072

Max. tree depth 4

Min. child weight 4

Column subsampling % 0.78

# of trees 84

I3, I4 Learning rate 0.147

Max. tree depth 3

Min. child weight 2

Column subsampling % 0.894

# of trees 291

Table 5 
Hyperparameter Values for Training GBMs Using the Different Input Sets 
in Table 4
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ing a small learning rate. To further alleviate this issue, we use a technique 
for employing dropouts in GBMs introduced by Korlakai Vinayak and 
Gilad-Bachrach  (2015). Dropouts have been used successfully in neural 
networks, where a random subset of connections in the network is dropped 
during training (Srivastava et  al.,  2014). In the context of GBMs, at each 
training iteration, we replace 𝐴𝐴 𝐴𝐴𝐴(𝑚𝑚1) in Equation 3 with the sum of a random 
subset, instead of all, of the previously constructed trees and then normalize 
the newly constructed tree and dropped trees. Further details of this proce-
dure can be found at (Korlakai Vinayak & Gilad-Bachrach, 2015).

3.2. Feature Importance

Methods for computing feature contribution, or feature importance, can be 
categorized as global versus local and model-specific versus model-agnostic. 
Global feature importance scores are used to explain a model's overall 
behavior across the entire training data set, while local feature importance 
scores tells you how individual features contributed to a single prediction. 
Model-specific feature importance is provided directly by the model, while 
model-agnostic methods, such as SHAP, typically construct an approximate 
interpretable model to explain predictions from the original model. For 
tree-based models, global feature importance can be calculated using infor-
mation gain (Breiman et  al.,  1984), permutation (Breiman,  2001), or split 
count (Chen & Guestrin,  2016). In this paper, we will focus primarily on 
local feature importance as the contribution from each feature is likely to vary 
over time depending on the storm phase.

While there are several methods for computing local feature contribution 
in tree-based models (Molnar, 2019), we chose to use SHAP because of its 
desirable theoretical properties (Lundberg & Lee, 2017). SHAP is based on 
Shapley values in cooperative game theory (Shapley, 1953), where they are 
used to fairly distribute payoffs in a game among a coalition of players with 
unequal contributions. In the case of SHAP, the payoff is the prediction and 
the players are the features. SHAP belongs to the class of additive feature 
attribution methods which assumes the following linear explanation model 
for an individual prediction.

𝑔𝑔(𝐳𝐳) = 𝜙𝜙0 +

𝑝𝑝
∑

𝑖𝑖=1

𝜙𝜙𝑖𝑖𝑧𝑧𝑖𝑖, (5)

where ϕ0 is a reference value (e.g., mean); p is the number of input features; 𝐴𝐴 𝐳𝐳 = (𝑧𝑧1 … 𝑧𝑧𝑝𝑝)
′ , where zi is a binary 

variable indicating whether feature i is present; and ϕi is the contribution from feature i. SHAP yields the unique 
solution to Equation 5 that satisfies three desirable theoretical properties: local accuracy, missingness, consist-
ency. The local accuracy property ensures that the sum of feature contributions for given inputs sum up to the 
prediction. The consistency property ensures that the SHAP value for a feature increases if the marginal contribu-
tion from that feature increases. Missingness is mainly a theoretical property that says a missing feature has zero 
contribution. The only alternative tree-specific local explanation method that we are aware of is Saabas (2014), 
which doesn't have the consistency property. SHAP values describe a particular model's decision-making process 
based on the data. Therefore, they can only be used to gain insight into the data-generating process when the 
model approximates the underlying process well enough. Furthermore, the effect that multicollinearity has on 
SHAP values depends on the particular model used (in our case, GBMs).

Although SHAP values can, in theory, be computed for any black box model, they are more computationally 
efficient for tree-based models like GBMs due to a model-specific algorithm for computing exact SHAP values 
known as TreeSHAP (Lundberg et al., 2019), which reduces the computational complexity from exponential to 
polynomial. For other complex models like neural networks, computing SHAP values would require refitting 

Storm # GBM LSTM2 LSTM1 Burton Persistence

26 5.863 6.630 6.700 6.839 7.631

27 7.729 8.913 8.900 7.954 9.623

28 4.281 5.858 5.400 5.697 5.814

29 5.833 6.683 7.200 6.511 7.174

30 4.927 5.200 5.600 4.614 4.810

31 8.277 8.584 10.700 8.838 10.429

32 6.841 7.259 8.300 9.487 10.528

33 14.492 13.340 16.300 16.630 21.167

34 10.190 10.034 11.300 10.888 10.913

35 7.154 7.693 8.500 7.918 8.011

36 8.512 9.525 8.700 9.082 9.708

37 14.548 15.184 17.500 15.713 19.698

38 3.886 4.080 4.200 4.572 4.842

39 5.901 6.431 5.600 6.663 7.597

40 4.976 4.673 5.500 5.371 5.057

41 7.558 7.882 9.000 8.358 9.984

42 5.030 5.669 5.900 5.549 6.036

Mean 7.412 7.860 8.550 8.276 9.354

Median 6.841 7.259 8.300 7.918 8.011

Min.  3.886 4.080 4.200 4.572 4.810

Max.  14.548 15.184 17.500 16.630 21.167

Std. Error 0.763 0.713 0.901 0.840 1.131

Note. Here, the GBM, LSTM1, and LSTM2 were trained with past SYM-H 
and IMF parameters as inputs. The lowest RMSE for each row is shown in 
bold.

Table 6 
RMSEs for 1-hr Ahead Prediction Over the Test Storm Set With Our 
GBM Model, LSTM1 (Siciliano et al., 2021) and LSTM2 (Collado-
Villaverde et al., 2021) Neural Networks, Burton Equation (O’Brien and 
McPherron (2000a, 2000b)) and Simple Persistence
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the model with many subsets of features, which is impractical if training is 
expensive and more than a few features are used. Unfortunately, a downside 
of using TreeSHAP is that non-contributing features can potentially have 
a non-zero contribution if they are correlated with a contributing feature 
(Molnar, 2019).

4. Results
In this section, we will compare the predictive performance of GBMs with 
neural networks developed by Collado-Villaverde et al. (2021) and Siciliano 
et  al.  (2021), explain model predictions using the methods discussed in 
Section  3.2, and discuss how predictions vary when the different set of 
features listed in Table  4 are used as inputs. To evaluate the predictive 
accuracy of GBMs for forecasting the SYM-H index, we use the root mean 
squared error (RMSE) defined in Equation 6.

RMSE (𝑦𝑦𝑦 𝑦𝑦𝑦) =

√

√

√

√

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)
2 (6)

The RMSE metric provides insight into how well predictions match observa-
tions on average so a lower value is better.

To supplement the RMSE metric, we also use the forecast skill score (FSS) 
based on mean squared error (Murphy,  1988) using the Burton equation 
described in O’Brien and McPherron (2000a, 2000b) as a baseline defined as

FSS (𝑦𝑦𝑦 𝑦𝑦𝑦𝑦 𝑦𝑦burton) = 1 −
MSE (𝑦𝑦𝑦 𝑦𝑦𝑦)

MSE (𝑦𝑦𝑦 𝑦𝑦burton)
𝑦 (7)

where yburton denotes the predictions from the Burton equation and 
𝐴𝐴 MSE (𝑦𝑦𝑦 𝑦𝑦𝑦) = (1∕𝑛𝑛)

∑𝑛𝑛

𝑖𝑖=1
(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑦𝑖𝑖)

2 . The Burton equation, which predicts the 
evolution of pressure-corrected Dst from the half-wave rectified solar wind 
motional electric field, is an appropriate baseline as it is derived from physi-

cal understanding and is thus also an interpretable method for predicting the SYM-H index. The metric in Equa-
tion 7 evaluates the performance of model predictions relative to the baseline predictions. If FSS is between 0 and 
1 (inclusive), that means the considered model outperforms the baseline. However, if FSS is negative, that means 
the considered model performs worse than the baseline.

4.1. Comparison to Existing Methods

In this section, we compare the predictions obtained using our model with the neural networks developed in 
Siciliano et al. (2021) (LSTM1/CNN1) and Collado-Villaverde et al. (2021) (LSTM2) on the 17 test storms in 
Table 2 using the RMSE metric. Collado-Villaverde et al.  (2021) considers 1–2 hr ahead prediction, whereas 
Siciliano et al. (2021) only considers 1-hr. On the other hand, Siciliano et al. (2021) trains models with and with-
out the SYM-H index as an input, whereas Collado-Villaverde et al. (2021) only trains models with SYM-H. We 
train GBM models to predict 1–2 hr ahead with and without the SYM-H index as an input and compare them to 
the corresponding neural network models. All models were trained using data from the same storms in Table 1. 
The RMSE values and FSSs for each test storm and all considered models are shown in Tables 6–9. Similar to 
Collado-Villaverde et al. (2021), we also compute the mean RMSE over all storms.

For each prediction scenario, we perform a paired t-test to determine if the mean difference in RMSEs across 
storms is statistically significant at a 5% significance level. A paired t-test can be used to compare two population 
means where there are two samples with observations that can be paired with one another. It amounts to perform-
ing a one-sample t-test on the differences of the paired observations. In our case, we can match the RMSEs of 
different methods for the same storm together.

Storm # GBM LSTM2 LSTM1

26 0.143 0.031 0.020

27 0.028 −0.120 −0.119

28 0.249 −0.028 0.052

29 0.104 −0.026 −0.106

30 −0.068 −0.127 −0.214

31 0.063 0.029 −0.211

32 0.279 0.235 0.125

33 0.129 0.198 0.020

34 0.064 0.078 −0.038

35 0.096 0.028 −0.074

36 0.063 −0.049 0.042

37 0.074 0.034 −0.114

38 0.150 0.108 0.081

39 0.114 0.035 0.160

40 0.074 0.130 −0.024

41 0.096 0.057 −0.077

42 0.094 −0.022 −0.063

Note. Here, the GBM, LSTM1, and LSTM2 were trained with past SYM-H 
and IMF parameters as inputs. The highest skill score for each row is shown 
in bold.

Table 7 
Forecast Skill Scores (Using the Burton Equation (O’Brien and 
McPherron, 2000a, 2000b) as the Baseline) for 1-hr Ahead Prediction Over 
the Test Storm Set With Our GBM Model, LSTM1 (Siciliano et al. (2021)) 
and LSTM2 (Collado-Villaverde et al. (2021)) Neural Networks
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4.1.1. 1-Hr Ahead Predictions

Tables 6 and 7 show the RMSE values and FSSs for 1 hr ahead predictions 
with SYM-H included as an input using our GBM, LSTM1, LSTM2, and 
the simple persistence model. In this case, our GBM achieves the lowest 
mean and median RMSE among the considered models. Our GBM model 
has a 0.448 nT (5.7%) lower RMSE than LSTM2, a 1.138 nT (13.3%) lower 
RMSE than LSTM1, and a 1.942 nT (20.8%) lower RMSE than the persis-
tence model. Furthermore, our GBM has the lowest RMSE and highest skill 
score for 14 out of 17 test storms (26–32, 35–38, 41, 42). Figure 2 shows 
the 1 hr ahead predictions from our GBM and LSTM2 during the main and 
recovery phases of the three strongest test storms with SYM-H < −300 nT 
(31, 33, 37) along with the corresponding prediction errors. The distribution 
of the prediction errors are roughly similar for these three test storms. For the 
March 2001 storm (second row; Figure 2), our GBM was able to accurately 
predict the minimum SYM-H of around −400 nT that was reached around 
06:00 to 12:00 UT March 31 even though the timing is slightly off. A similar 
plot and analysis for the persistence model is given in Appendix A1.

4.1.2. 2-Hour Ahead Predictions

Tables 8 and 9 show the RMSE values and FSSs for 2-hr ahead predictions 
from GBM and LSTM2 with past SYM-H included as an input. Our GBM 
model has a mean RMSE that is 3.585  nT (24.8%) lower than the mean 
RMSE for the simple persistence model. However, the mean RMSE for our 
GBM model is 0.328 nT (3.1%) greater than the one for LSTM2. Moreover, 
LSTM2 has a lower RMSE and higher skill score for 8 out of the 17 test 
storms (31–33, 36, 37, 39–41).

4.1.3. Predictions Without Past SYM-H

When we omit the SYM-H index as an input to predict 1-hr ahead, our GBM 
outperforms LSTM1 and has similar performance as CNN1. Table 10 shows 
the RMSE for 1-hr ahead predictions from GBM, LSTM1, and CNN1 and 
2-hr ahead predictions from GBM. Our GBM model has a 3.5 nT (15.4%) 
lower mean RMSE than LSTM1 and a 1.6 nT (7.7%) lower mean RMSE than 
CNN1. Furthermore, the GBM model has the lowest RMSE for 11 out of 17 
test storms. However, CNN1 achieves a lower RMSE for the 3 strongest test 
storms (33, 37, 40).

4.1.4. Statistical Significance

Table 11 shows the p-values for the paired t-tests described in the second paragraph of Section 4.1. From this 
table, we can see that the mean differences in RMSE across storms between GBM and competing methods for all 
prediction scenarios are statistically significant at a 5% significance level (p-value ≤0.05) except for 2 hr ahead 
prediction with LSTM2.

4.2. Explaining Predictions

In this section, we explain how the input features we use contributed to our model's predictions using the methods 
discussed in Section 3.2. To obtain the contributions from each feature in Table 3, we sum up the contributions 
from the history of that feature.

Figure 3 shows the contributions to the 1-hr prediction from various features as a function of the SYM-H. Overall, 
the past SYM-H value dominates, which means that SYM-H varies smoothly at a 1-hr time scale. This also means 
that beating the persistence model is not easy. The second most important contribution comes from Bz, which 
is expected based on its importance in driving magnetic reconnection that allows energy entry into the magne-
tosphere. What is less expected is that the velocity Vx and the rectified electric field Es are much less important  

Storm # GBM LSTM2 Burton Persistence

26 8.285 8.989 10.690 12.374

27 11.585 13.418 12.465 15.387

28 5.650 5.877 8.858 9.331

29 8.826 9.314 9.776 11.415

30 7.280 7.288 6.266 7.416

31 12.613 12.436 13.604 17.193

32 9.927 8.937 13.766 15.282

33 24.519 18.481 25.729 33.927

34 13.736 13.941 14.695 15.109

35 9.504 9.932 10.586 11.211

36 12.068 12.058 13.117 14.687

37 22.327 21.084 24.446 30.582

38 5.153 5.213 6.546 7.353

39 7.391 6.798 10.159 12.322

40 5.633 5.281 6.032 6.373

41 12.121 11.707 12.622 15.437

42 7.976 8.273 8.877 10.130

Mean 10.858 10.530 12.249 14.443

Median 9.504 9.314 10.690 12.374

Min. 5.153 5.213 6.032 6.373

Max. 24.519 21.0840 25.729 33.927

Std. error 1.310 1.077 1.338 1.808

Note. Here, the GBM and LSTM2 model were trained with past SYM-H and 
IMF parameters as inputs. The lowest RMSE for each row is shown in bold.

Table 8 
RMSEs for 2-Hour Ahead Prediction Over the Test Storm Set With Our 
GBM Model, the LSTM2 Neural Network (Collado-Villaverde et al., 2021), 
Burton Equation (O’Brien and McPherron, 2000a, 2000b) and Persistence
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for the storm peak values (SYM-H below −100 nT). In fact, the third most 
important feature is the dynamic pressure 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  . One would expect the dynamic 
pressure to be most important during the sudden storm commencement that 
produces a positive jump in SYM-H. Interestingly, the contributions of 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  
and Bz are comparable even for predicting positive SYM-H, except for the 
most positive values. Overall, we find that past SYM-H and Bz are the most 
important features. Density, velocity, the derived dynamic pressure and recti-
fied electric field are comparable. The rest of the features, such as Bx, By 
and temperature provide quite small contributions. Note that the rectified 
Es is a less important contributor than Bz and the dynamic pressure, despite 
its physical significance of carrying the magnetic flux that induces dayside 
reconnection.

Figure 4 shows the contribution of various features of the model that is not 
using past SYM-H. As expected, Bz becomes the most important feature. 
Now velocity and density are the next most important features, especially 
for moderate values of SYM-H, and the dynamic pressure by itself does not 
have enough information (unlike in the previous case that used past SYM-H). 
The rectified Es is still a rather small contributor compared to Bz. This can 
be explained by jointly examining the contributions of Bz and Vx: Bz becomes 
more and more dominant for larger negative SYM-H values. On the other 
hand, the contribution of Vx peaks at moderate storm with SYM-H above 
−100 nT, and its contribution tapers off for the very strong storms. While the 
electric field Es combines these two terms, one can see that their contributions 
are most effective in different severity of storms or different phases of the 
storm, suggesting that considering them as independent variables rather  than 
as a single parameter provides more insight into the underlying physics. The 
strong contribution of density for small and positive SYM-H values speaks to 
the importance of density pulses that often are found at the leading edges of 
solar wind structures impacting the Earth (Kilpua et al., 2017).

4.2.1. November 2004 Storm

We now look into how the prediction is obtained during the strongest test storm. Figure 5 shows the absolute and 
relative contributions of various features to the 1- and 2-hr ahead predictions of SYM-H during the November 
2004 geomagnetic storm. The minimum SYM-H is close to −400 nT for this extreme event, so the RMSE of 
about 30 nT for 1-hr and 39 nT for 2-hr forecast are quite accurate (top row). The absolute and relative contribu-
tions shown in the subsequent rows vary substantially during the storm. From 18:00 to 20:45 UT (following the 
Storm Sudden Commencement, SSC), the observed SYM-H is positive, and this is roughly captured by the model 
for 1-hr prediction, but is completely missed by the 2-hr forecast. This is not very surprising, since there is no 
information in the solar wind that would predict the sudden commencement prior to the arrival of the shock. The 
only reason the 1-hr prediction can get the SSC about half an hour rather than 1 hr late is the lead time provided 
by the time it takes the high speed solar wind to propagate from L1 to the Earth. The main contributors to the 
1-hr prediction during this period are the density and dynamic pressure, and to some extent the IMF Bz. Based 
on our physical understanding, we would expect the dynamic pressure to be a more important predictor than the 
density, but that is clearly not the case, perhaps associated with the relatively constant value of the solar wind 
speed over that period.

During the main phase (22:00 November 7 to 06:00 November 8) of the storm, the SYM-H gradually drops to its 
minimum value near − 400  nT. Focusing on the two-hour prediction, the relative contribution of Bz peaks around 
22:00 on November 7, and 01:00 and after 04:00 UT. The first peak corresponds to the time when Bz decreases 
rapidly to nearly −50 nT value. The following period of very intense southward IMF shows initially low contribu-
tion from Bz, but then consistently high values with a peak at 04:00 close to the SYM-H minimum demarking the 
end of the storm main phase. The contribution from By, while generally low, has a broad peak between 20:00 and 

Storm # GBM LSTM2

26 0.225 0.159

27 0.071 −0.076

28 0.362 0.337

29 0.097 0.047

30 −0.162 −0.163

31 0.073 0.086

32 0.279 0.351

33 0.047 0.282

34 0.065 0.051

35 0.102 0.062

36 0.080 0.081

37 0.087 0.138

38 0.213 0.204

39 0.272 0.331

40 0.066 0.125

41 0.040 0.072

42 0.101 0.068

Note. Here, the GBM and LSTM2 model were trained with past SYM−H 
and IMF parameters as inputs. The highest skill score for each row is shown 
in bold.

Table 9 
Forecast Skill Scores (Using the Burton Equation [O’Brien and 
McPherron, 2000a, 2000b] as the Baseline) for 2-hr Ahead Prediction Over 
the Test Storm Set With Our GBM Model and the LSTM2 Neural Network 
(Collado−Villaverde et al., 2021)
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00 UT on November 7. During that period, By is first positive and then turns strongly negative. As the Bz is nega-
tive during that time, the strong By component adds to the efficiency of the dayside reconnection process, which 
may account for its independent role as a predictor. Finally, during the recovery phase the prior SYM-H domi-
nates (SYM-H evolution dominated by internal ring current loss processes), with Bz playing a secondary role.

Figure 6 shows the contribution of features as a function of time when the prior SYM-H is not used. The RMSE 
values become 33 and 37 nT for the 1 and 2-hr predictions, respectively. For the 1-hr prediction, RMSE slightly 
increases by about 3 nT, but for the 2-hr prediction, RMSE decreases by roughly 2 nT. This suggests that there is 
no additional information from the 2-hr old SYM-H compared to what the model can infer from a longer history 
of L1 observations, at least for this event. If this held in general, it would put a prediction window limit on using 
past SYM-H for data assimilation purposes. Another unexpected result is that the 1-hr prediction misses the posi-
tive SYM-H period despite using the dynamic pressure. This is in contrast with the 1-hr prediction that includes 
past SYM-H, which produced a larger positive SYM-H, although still lower than observed.

The relative contributions (bottom row) show a rather complicated and interesting pattern. In the initial storm 
period 18:00 to 21:00 UT, when the observed SYM-H is positive, the main contributors are density and velocity. 
Once SYM-H goes negative, Bz gradually becomes the main contributing feature with Es and, Bx (for 1-hr predic-
tion) and By (for 2-hr prediction) being the second and third most important. Once SYM-H drops below −100 nT, 
the contribution from Bz becomes dominant and this remains true during the whole recovery phase. The other 

Figure 2. 1-hr ahead predictions for the three strongest geomagnetic storms in the test set during the main and recovery phases from our gradient boosting machine 
(GBM) (left column) and the LSTM2 developed by Collado-Villaverde et al. (2021) (right column). The observed SYM-H (black), the predicted SYM-H (blue) and the 
error (red) are shown for storms 31, 33, and 37 in the three rows, respectively.
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features start to contribute more after 12:00 UT Nov 8 when Bz turns positive. 
Even with positive Bz, however, the main contributor remains Bz. This shows 
that the rectified Es, which simply zeroes out the electric field for positive Bz, 
is throwing away potentially important information.

4.2.2. January 2004 Storm

Next, we study the storm of January 2004 that has a minimum SYM-H of 
about −140 nT, so it is an intense storm, but not as extreme as the November 
2004 super storm. As shown in Figure 7, this is a very complicated storm due 
to the highly variable Bz field in the CME sheath (00:00 UT to 11:00 UT Jan 
22) preceding the magnetic cloud with consistently negative Bz. The model 
prediction has 14.22 and 19.96 nT RMSE for the 1- and 2-hr predictions, 
respectively, which is quite good for such a complicated event. In the ICME 
sheath, the main contributor is the previous SYM-H followed by the dynamic 
pressure.

The 1-hr ahead model predicts the jump of SYM-H from 0 to about +30 nT 
at 2:00UT, which is about half an hour late compared to observations. This 
cannot be based on prior SYM-H that is observed 1 hr earlier, and it is clearly 
obtained from the dynamic pressure as expected from physical understand-
ing. The 2-hr prediction, however, completely misses predicting positive 
SYM-H values (except for following the increase of the observed SYM-H 
with a 2-hr delay), similarly to the extreme event case.

Between 01:00 and 11:00 UT the main contributors are the prior SYM-H 
and the dynamic pressure, with Bz playing a minor role only. After 11:00 UT, 
however, Bz turns consistently negative and it becomes the main contributor 
of predicting the main phase of the storm 1 or 2 hr later for the two models, 
respectively. The 2-hr prediction also relies heavily on By between 10 and 
12:00 UT. A possible explanation is that the strong magnetic field in the 
magnetic cloud rotates, so a strong signal in Bx or By may be a predictor for a 
strong, possibly negative, Bz value that has strong geomagnetic impact.

The model correctly predicts the minimum value of SYM-H, but it is late 
by an hour and 2 hr for the 1- and 2-hr predictions, respectively. This means 
that the prior SYM-H was the primary contributor to the prediction of the 
minimum SYM-H. We note that the last available Bz is negative, but has a 
small amplitude at this point (about −5 nT). Clearly the model is not capable 

of predicting the behavior of the storm very well during this time period for this particular event. The recovery 
phase is correctly captured with the prior SYM-H dominating, as expected. Bz becomes slightly more negative 
from 19:00 to 23:00, and the importance of Bz and Es becomes significant during this time correctly predicting 
the slowdown of the recovery, although with considerable delay.

Figure 8 shows the model predictions for the January 2004 storm without relying on the prior SYM-H values. 
The RMSE is around 33 nT for both the 1 and 2-hr ahead forecast. The positive SYM-H values are missed by 

the model and in fact there is a considerable underprediction of SYM-H until 
11:00 UT. The main phase of the storm corresponding the rapid decrease of 
SYM-H is quite well captured. It is slightly too early for the 1-hr prediction, 
and quite spot on for the 2-hr prediction. The minimum SYM-H is correctly 
predicted by both models with an hour delay, and it is actually somewhat 
better predicted by the 2-hr ahead model. The recovery phase is reasonably 
predicted, although the predicted recovery rate is somewhat slower than what 
is observed.

The main contributors to the prediction before 11:00 UT are velocity,the 
rectified electric field and density. During the main phase and the recovery, 

1-hr ahead 2-hr ahead

Storm # GBM LSTM1 CNN1 GBM

26 12.6 18.0 19.8 12.9

27 20.1 16.8 23.4 20.9

28 12.7 18.6 14.4 12.4

29 15.4 21.1 20.0 16.7

30 17.0 24.2 25.8 17.1

31 28.5 32.5 32.1 29.6

32 21.8 23.4 18.9 21.9

33 35.7 33.8 26.7 38.1

34 15.3 17.9 16.6 15.5

35 16.9 21.3 18.6 17.3

36 16.2 20.4 21.4 16.8

37 41.6 42.6 36.9 42.7

38 10.5 18.6 13.0 10.6

39 13.0 20.3 16.5 12.8

40 10.9 13.6 9.2 10.6

41 23.2 27.3 25.4 23.7

42 16.9 17.8 16.7 17.1

Mean 19.3 22.8 20.9 19.8

Median 16.9 20.8 19.9 17.1

Min. 10.5 13.6 9.2 10.6

Max. 41.6 42.6 36.9 42.7

Std. Error 2.284 1.994 1.853 2.402

Note. For 1-hr ahead predictions, the lowest RMSE in each row is shown in 
bold.

Table 10 
RMSEs for 1- and 2-hr Ahead Predictions Using Only the IMF as Input 
(I2) With Our GBM Model and the LSTM1 and CNN1 Models of Siciliano 
et al. (2021)

1 hr ahead 2 hr ahead

LSTM2 0.008 0.419

LSTM1 0.000 N/A

Burton 0.000 0.000

Persistence 0.000 0.000

Table 11 
P-Values From Paired t-Tests for Null Hypothesis That the Mean Difference 
in RMSE Across Storms for GBM Versus Competing Methods Is Zero
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Bz becomes an important contributor, but the velocity and Es still play considerable roles. Bx becomes the most 
important contributor during the recovery phase. Figure 4 confirms that Bx and By become significant contribu-
tors when prior SYM-H is not used.

One of the surprises mentioned above was that Bz is a better predictor than Es. However, these features are 
highly correlated so it is not clear if the GBM prefers Bz over Es by chance only. To investigate this question, 
we have performed experiments to see whether Bz or Ey, or the rectified Es is the best predictor out of the three 
for future SYM-H. To make Ey (or Es) and Bz fully independent of each other, we have removed the Vx and 

Figure 3. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) for all the geomagnetic storms. The panels show the contributions of all considered 
features to the 1-hr ahead gradient boosting machine (GBM) prediction. Each prediction is represented as black dots. Kernel density estimates using a Gaussian kernel 
are shown in color with the corresponding color legend on the right of each scatter plot.

Figure 4. Scatter plot of percentage contributions (y-axis) against SYM-H (x-axis) from solar wind and interplanetary magnetic field (IMF) parameters for 1-hr ahead 
prediction from gradient boosting machine (GBM) using only solar wind and IMF parameters as input. Each prediction is represented as black dots. Kernel density 
estimates using a Gaussian kernel are shown in color with the corresponding color legend on the right of each scatter plot.
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Figure 5. 1-hr (left) and 2-hr (right) ahead predictions for the November 2004 storm using gradient boosting machine (GBM) trained on all considered features. The 
first row shows the observed (black) and predicted (blue) SYM-H values. Rows 2–9 show the contributions from each feature (left axis, colored) and its value (right 
axis, black). The percentage contributions are shown in the last row. The contribution from past SYM-H on predictions is omitted, but its percentage contribution is 
implicitly shown as the remaining white area in the last row.
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Figure 6. 1-hr (left) and 2-hr (right) ahead predictions for the Nov. 2004 storm using gradient boosting machine (GBM) trained on only solar wind and IMF parameters 
(first row), corresponding feature contributions and values (rows 2–9), and percentage contributions (last row).
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Figure 7. 1-hr (left) and 2-hr (right) ahead predictions for the Janurary 2004 storm using gradient boosting machine (GBM) 
trained on all considered features (first row), corresponding feature contributions and values (rows 2–9), and percentage 
contribution (last row). The contribution from past SYM-H on predictions is omitted but the percentage contribution is 
implicitly shown as the remaining white area in the last row.
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Figure 8. 1-hour (left) and 2-hr (right) ahead predictions for the January 2004 storm using gradient boosting machine (GBM) 
trained on all considered features (first row), corresponding feature contributions (rows 2–9), and percentage contribution 
(last row).



Space Weather

IONG ET AL.

10.1029/2021SW002928

18 of 23

𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  features and used only one the three quantities (Bz, Ey, and rectified Es) 
together with density and temperature while training the GBM. The RMSE 
values are shown in Table 12 including both cases with and without prior 
SYM-H.

Based on the RMSE values in the table, we conclude that Bz is the best predic-
tor followed by Ey and the rectified Es. It is also interesting to see that past 
SYM-H and Bz together are pretty much all that the model needs. The veloc-
ity Vx, for example, plays no significant role in contributing to the quality of 
the prediction as it only improves the RMSE from 7.35 to 7.26 nT. When past 
SYM-H is not used, the velocity plays a more important role by improving 
the RMSE from 20.84 to 18.39, but still much less important than Bz, Ey or 
Es. A possible reason may be that Vx varies only about a factor of 2 between 
about −350  km/s and −700 km/s even during storm events.

5. Discussion and Conclusions
We apply an explainable machine learning method to quantify the contribution of prior SYM-H values, solar 
wind, IMF, and derived parameters to predictions of the SYM-H index 1–2 hr ahead. In particular, GBMs are 
used and the explanation is based on the TreeSHAP method. We showed that GBMs yield a statistically signifi-
cant improvement in RMSE over most of the competing methods we compared it to.

From the quantified feature contributions, we were able to show that our proposed model makes predictions in 
a physically consistent manner, while also challenging some of the commonly assumed relationships among the 
interplanetary magnetic field, the solar wind and the formation of Earth's ring current. In particular, we found that 
past SYM-H and Bz are the most important features overall but feature contributions vary depending on the storm 
phase and the storm itself. During the storm sudden commencement, past SYM-H, density, velocity, and to some 
extent, dynamic pressure and electric field, became the main contributors to predictions. As SYM-H decreases 
during the main phase, past SYM-H and Bz played an increasingly larger role.

SHAP values revealed ways that our models made predictions during the two storms we investigated in detail: 
density and velocity had a larger independent contribution than dynamic pressure during the storm sudden 
commencement; By had a non-negligible contribution during the storm sudden commencement and main phase; 
and Bz was a better predictor than the rectified Es. However, strong correlation among solar wind variables 
(Borovsky, 2018) may affect how SHAP values should be interpreted. A physically important feature may have 
a small contribution if a highly correlated feature is present and has a large contribution. For example, from 
Figures 3 and 4, we see that the contribution from Vx increases drastically when past SYM-H is omitted as an 
input, which is likely due to the correlation between SYM-H and Vx. Therefore, a low feature contribution should 
not simply be interpreted to mean the corresponding feature is not physically important without investigating how 
different features are correlated. Further efforts will be made to investigate the robustness of these findings and 
to perform a comparison of feature contributions for many different storms.

Along with gray-box approaches, this work takes the first steps in making machine learning methods more 
reliable and trustworthy for operational forecasting of geomagnetic activity. However, explanation methods 
like SHAP should be used with caution, especially in high-stakes decision making, as they do not always 
provide explanations that are faithful to the original model (Rudin, 2019). Thus, developing highly accurate 
but intrinsically interpretable models should be prioritized. In addition to interpretability, quantified uncer-
tainty is also equally as important. Consequently, we will devote future efforts to developing interpretable 
methods for forecasting other types of geomagnetic indices and geomagnetic activity that also estimate predic-
tive uncertainty.

Bz Ey Es Bz, Es, 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥

Including SYM-H 7.35 8.00 8.26 7.26

Excluding SYM-H 20.84 21.12 21.45 18.39

Note. The RMSE from a model trained with Bz, Es, and 𝐴𝐴 𝐴𝐴𝐴𝐴 2

𝑥𝑥  is shown in 
the last column as reference. For these experiments, density and temperature 
were also used as features.

Table 12 
RMSE From Models With Only One of Bz, Ey, and Es Included as Input 
Calculated Using all Test Storms
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Appendix A: Graphical Comparison With Persistence Model and Burton Equation
Figure A1 shows the 1 hr ahead predictions from our GBM (with past SYM-H and IMF parameters as input) and the 
persistence model during the main and recovery phases of the three strongest test storms with SYM-H < −300 nT 
(31, 33, 37) along with the corresponding prediction errors. The difference in prediction error between our GBM 
and the persistence model is most notable during the main phases of the three storms considered. For example, 
during the main phase of storm 37, the persistence model has prediction errors reaching >100 nT which means it 
severely overpredicts SYM-H during the main phase. Meanwhile, our GBM has prediction errors between around 
−100 to 40 nT, which means it tended to underpredict rather than overpredict SYM-H. Figure A2 shows the 1 hr 
ahead predictions from our GBM and the Burton equation during the same time periods. In these plots, the GBM 
seems to capture the timing of the storms slightly better than the Burton equation. However, they have similar 
predictive performance during these three storms as shown by their RMSEs in Table 6.

Figure A1. 1-hr ahead predictions for the three strongest geomagnetic storms in the test set during the main and recovery phases from our gradient boosting machine 
(GBM) with past SYM-H and IMF parameters as input (left column) and the persistence model (right column). The observed SYM-H (black), the predicted SYM-H 
(blue) and the error (red) are shown for storms 31, 33, and 37 in the three rows, respectively.
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Figure A2. 1-hr ahead predictions for the three strongest geomagnetic storms in the test set during the main and recovery phases from our gradient boosting machine 
(GBM) with past SYM-H and IMF parameters (left column) and the Burton equation (right column). The observed SYM-H (black), the predicted SYM-H (blue) and 
the error (red) are shown for storms 31, 33, and 37 in the three rows, respectively.

Parameter Min. 25% Quantile Median 75% Quantile Max.

Bx (nT) −43.700 −3.131 0.340 3.378 34.681

By (nT) −51.968 −2.901 0.221 3.289 46.862

Bz (nT) −77.258 −2.296 −0.092 2.179 38.717

Vx (km/s) −1,233.693 −539.489 −445.287 −384.021 −264.722

Density (amu/cm 2) 0.041 2.912 5.027 8.477 76.239

Temperature (MK) 0.0032 0.0385 0.0702 0.1262 1.0983

Note. The Minimum Temperature (MK) is Most Likely a Measurement Error.

Table A1 
Descriptive Statistics for the Solar Wind and IMF Parameters in the 25 Storms Used for Training Listed in Table 1
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Data Availability Statement
The ACE level 2 data used as inputs into our models in this study is available through NASA/GSFC's Space 
Physics Data Facility's (SPDF) Coordinated Data Analysis Web (CDAWeb) at https://cdaweb.gsfc.nasa.gov/. The 
SYM-H index data is available through SPDF's OMNIWeb at https://omniweb.gsfc.nasa.gov/. All relevant digital 
materials used in this manuscript will be permanently archived at the University of Michigan (UM) Library Deep 
Blue Data Repository (https://deepblue.lib.umich.edu/data), which is specifically designed for UM researchers to 
share their research data and to ensure its long-term viability.
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